
waves in a stratified layer it depends on Fr: as Fr + 0 it approaches zero, while as Fr § 

it approaches 8 w. 

An even smaller difference is observed in the behavior of waves at the boundary of the 
wedge itself. The crests at the boundary of the wedge of surface ship waves make an angle 
of ~w=arctan~ with the x axis. In the case of internal ship waves as Fr + ~ it 
approaches ~ w, and as Fr decreases it slowly grows and approaches 60 ~ . Figure 6 shows the 
theoretical dependence of the slope angle of the tangent at the turning point of the line of 
constant phase with respect to the x axis on i/Fr. 

For small values of Fr the experimentally observed lines of constant phase are practi- 
cally parallel straight lines. In addition, they pass outside the boundary of the wave zone, 
determined by the value of 8 (8 + 0). 

We thank A. T. Onufriev for a discussion of the results obtained. 
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SOME CLASSES OF IZ~O-DIMENSIONAL 

VORTEX FLOWS OF AN IDEAL FLUID 

O. V. Kaptsov L~C 532.5+517.958 

There are relatively few known exact steady solutions of the two-dimensional Euler equa- 
tions [1-3]. This is in part explained by the fact that the symmetry group of these equa- 
tions is low [4]. But progress achieved in the study of nonlinear wave equations [5, 6] can 
be partially carried over to the study of elliptic problems. The purpose of the present 
paper is to obtain solutions of the equation for the stream function and to analyze these 
solutions. The solutions found here describe motion of the source type in a rotating fluid, 
periodic flow between two walls, motion in a rectangular cylinder, and others. 

i. The stream function ~ for the two-dimensional steady flow of an ideal fluid satis- 
fies the equation 

ar y )=  ~, (i. 1) 

w h e r e  t h e  v o r t i c i t y  e i s  a f u n c t i o n  o f  ~.  For  c e r t a i n  forms  o f  t h e  r i g h t  hand  s i d e  ( 1 . 1 )  
can  be  s o l v e d  u s i n g  a m o d i f i e d  s e p a r a t i o n  o f  v a r i a b l e s  method  and t h e  B e k l u n d  t r a n s f o r m a t i o n  
[6]. 

We assume that the vorticity is given by m(~) = ~ sin ~(e = • We look for a solu- 
tion of (i.I) in the form [5] ~(x, y) = 4arctan(f)x)g(y)), where the functions f and g satisfy 
the ordinary differential equations 

I '2 = nl 4 -5 ,np + k, g'~ = k ~  + (~ - -  m ) g  = + n (1.2)  

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 109-117, January-February, 1989. Original article submitted October 6, 1987. 
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(n, m, k are arbitrary constants). Then the w)rticity and the components of the velocity 

vector can be calculated from the relations 

(,) = 4e t~ (i -- f2g~). (i. 3) 
(I + l~g') 2 ' 

u=4 fz' v=--4 t'g 
1 +/~g'  ' 1 +f'g~" (1.4) 

~le choice of the constants in (1.2) determines the type of flow. Suppose n > 0, k, 

m < 0, and E = --i. We consider three cases: a) 4kn < m 2 < 1/4; b) 4kn = m 2 < 1/4; c) 
4kn = m 2 = 1/4. We first discuss the most degenerate situation, case c. In this case (1.2) 

is satisfied by the functions/(x)= i--J---tanh(~, g(y)=2~ntanhI~ ). Then in the plane of flow 

R2(x, y) the straight lines x = 0 and y = 0 are streamlines and the vorticity is zero on 
these lines. It follows from (1.3) that m < 0 in the first and third quadrants of the plane 
R2(x, y), while m > 0 in the second and fourth quadrants. Since the trajectories are deter- 

mined by the relationtanh ~ anh ~c where Icl < i, each stream line has its own pair of 

asymptotes x = c ~nd y = c. Because the functions f and g are odd, it is sufficient to know 

the streamlines in the first quadrant of the plane R2(x, y). The equation of the trajec- 

tories solved for y has the form y(~')~2ar[h(ccoth(~l] (O<c<l) .  Therefore the function 
\ \ ~ / /  

y(x) monotonically decreases for x > 2 arth c. The components of the velocity vector are 

and hence u + 0 in the limit IYl + ~ and v § 0 in the limit Ix! ~ =. In addition, the vor- 
ticity goes to zero when x and y both go to infinity. This solution can be interpreted as 
flow inside a right angle bounded by the coordinate axes, or as the symmetric collision of 
two diffuse "jets." The "jets" are diffuse since the pressure is not constant along any 

of the streamlines. 

Suppose we have condition b. Then by a scale transformation equation (1.2) for g 
reduces to the standard form g,2 = (i -- g2) x (i -- p2g2), where the constant p can be 
expressed in terms of n, m, and k. Hence the function g can be expressed in terms of the 
elliptic sine function sin y [7, 8] with a certain period T and two zeroes per period. In 
view of the translational invariance of (1.2), we can put g(0) = 0. l~e function f is given 

by ]~ V~-~-nm tanh x. Therefore the straight lines x = 0, y = TL/2 are streamlines 

(L is any integer). In view of the periodicity of g and the fact that f and g are odd func- 

tions, it is sufficient to know the streamlines inside the half-strip {0~y~T/2, x~0). 

m 
Since limtanh x =I, any trajectory tanh --~--~ x g(y) =c, where c ~ 0, has a pair of 

asymptotes parallel to the x axis. 'The equation for the trajectories determines the impli- 

cit function x(y), whose derivative is ~=--er_m g~ eosh Tx' and therefore it is 

not difficult to obtain a qualitative picture of the streamlines (Fig. I). We note that the 

velocity is finite but nonzero in the limit x + ~. 

"Finally in case ~ each of the equations of (1.2) can be transformed to the form h '2 = 
(I -- h2)(l -- p2h=) (p~R) by means of a scale transformation. It follows at once that 

f and g can be expressed in terms of elliptic sine functions [7, 8] of periods t~ and t2 and 
both functions have two zeroes per period. With no loss of generality we can assume that 
f(0) = g(0) = 0. Therefore the straight lines x = txL/2 and y = t2L/2 (L is any integer) 
are streamlines. In view of the periodicity of f and g and the fact that they are odd func- 
tions, the streamlines can be obtained over the entire plane of flow knowing only the 
behavior of the trajectories inside a rectangular cell P = {0~x~.tl/2, 0~y~t~2}. All. 

streamlines belonging to P are closed and bounded. Indeed, the derivatives of f and g are 
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nonzero except at the center of P, while the functions themselves do not have zeroes inside 

P and reach extremum values at the center of the cell. The streamlines are isolines of the 
function F(x, y) = f(x)g(y). The function F reaches an extremum at the center of P, and its 

gradient is nonzero inside P. This means, according to the regular interval theorem [9], 
that the isolines inside P are closed and bounded. Therefore the plane of flow splits up 

into rectangular cells of the type P. There is a vortex inside each cell. Equating the 
left hand sides of (1.2) to zero, we can easily find the extremum values of the functions f 

and g and show that Ifgl < i. Then it can be shown with the help of (1.3) that the vorticity 
goes to zero on the boundary of the cell and changes sign when passing through a side of the 

rectangle P. The vortices in neighboring cells also rotate in different directions. Since 
the vorticity as a function of fg is ~(c) = --4c(i -- c2)/(I + c2)2~ then depending on 

whether the absolute value of the product fg reaches the value ~ -- r (~ has an extremum 

for this value) or not, the vorticity will be an extremum either on the line Ifgl = ~ - r 
or in the center of the cell. If we assume the boundary of P is a solid wall, we have flow 
inside a rectangular cylinder. 

A different solution of (1.2) is obtained if we choose the parameters e = I, n = 0, 

k < 0, 0 < m < i. In this case the product fg = V i-mc~ �9 llence the straight 
cosh (~i - -  my) 

lines y~f!_ ..m_,nx are streamlines. Any. other trajectory has a pair of asymptotes 

parallel to these lines. The vorticity changes sign upon passing through these straight 
lines. Tile velocity and vorticity go to zero in the limit x + ~ along any of the family of 

straight lines y-= ax a ~  ~--m" This solution can be interpreted either as flow 

inside a two-sided angle (but not necessarily a right angle, as in case c) or as the colli- 
sion of two diffuse "jets." A detailed discussion is omitted since this solution is simi- 
lar to those discussed above. The qualitative picture of the streamlines is shown in Fig. 2. 

Solutions of the source or sink type in a rotating fluid are of interest. One of the 

1 , corresponding to the parameters simplest solutions of (1.2) is ](x) =~x,g(y)= ~ k s i ~ y  

e = i, m = n = O, k > 0. According to (1.4), the components of the velocity vector are u = 

-- ~si~v(si~2Y--x2) The stream- --4zcoshp --~i~2Y and the vorticity is given by ~ 4  (si~2y ~ x~) ~ 
x~-v  s i ~  2 y ,  V z'~.-;- s i ~ 2 y  ' 

lines are given by the equation x = c sinhy (e~ R). The origin of the coordinate system 
is a point of discontinuity for the velocity and the vorticity. However the flux Q = 

vdx + udy is finite in this case and equal to -8~. (It is convenient to evaluate the 

integral along the contour x 2 + sinh2y= I). Hence there is a sink at the origin. The vorti- 
city is zero on the lines x = • x=0, y = 0, except for the point of discontinuity, 
and it changes sign upon passing through these lines. The velocity goes to zero in the 
limit x -~ ~ and fixed y. If we take any streamline x = sinhy and follow the change in 
velocity along it, then u -> --4c/(i + c2), v + 0, when x and y go to infinity along the tra- 
jectory and the velocity will reach a maximum when Ic[ = i. In contrast to the potential 
solution for a sink, which is centrally symmetric, the flow found here resembles a four-cur- 
rent type of motion. 
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Fig. 3 

The above solution is the limiting case when m -~ 0 of the solution / =  ~ sinh(~mz), 

Vl--,,t ( k ~ > O , O < m . <  t) ,  which also describes flow of the sink type in a 
I 

g--- k sinh(W-_~ y) 
rotating fluid. Here each trajectory has a pair of asymptotes parallel to one of the lines 

Y-= q-V~ m x. These lines are streamlines on which the vorticity is zero and changes 
M 4 

sign upon passing through them. This flow can also be called four-current sink flow. The 
qualitative pictures of the streamlines for the latter two solutions are shown in Fig. 3. 
Interest in solutions of this kind was initiated with the work of Zhukovskii [i0]. 

2. Using complex variables, the equation for the stream function (i.i) with right hand 
side given by ~ = 4 sin ~ can be written in the form 

~p~l ---- sin ~p, z = x + i y ,  -z ---- x - -  i y .  ( 2 . 1 )  

Using the obvious analogy with the equation Xtx -- sin X [5], we immediately write down . the 
Beklund transformation [6] 

w h e r e  t h e  p a r a m e t e r  a i s  c o n s i d e r e d  a c o m p l e x  number  of  m o d u l u s  u n i t y .  I t  i s  e a s y  to  show 
t h a t  i f  ~ and  T a r e  s o l u t i o n s  o f  t h e  s y s t e m  ( 2 . 2 ) ,  t h e n  e a c h  of  t h e s e  f u n c t i o n s  s a t i s f i e s  
( 2 . 1 ) .  T h e r e f o r e  i f  we know one  s o l u t i o n  T of  ( 2 . 1 )  t h e  o t h e r  s o l u t i o n  c a n  be  f o u n d  by  
integrating the system (2.2). It is remarkable that this can be done by solving an ordinary 
differential equation of the first order. Repetition of this procedure leads to a new solu- 
tion of (2.1), and so on. The repeated integration can be avoided by using the Bianchi per- 
mutability theorem [6]. Let (i~----'--'~o be a known solution of (2.1) and let ~i(i = i, 2) be 
solutions obtained by integrating the system (2.2) with a = ai(i = i, 2). Then the Bianchi 
theorem can be used to find a new solution ~B directly from the equation 

tan r -- r a + % *, -- '2 -- tan (2.3) 
4 a , - - - a  2 ~ ' 

w h i c h  i s  a n o n l i n e a r  s u p e r p o s i t i o n  p r i n c i p l e  f o r  t h e  s o l u t i o n s  of  ( 2 , 1 ) .  T h i s  p r o c e s s  c a n  
be illustrated by means of a diagram 

~1,o K % 
o2 ~Z al 

�9 The identity (2.3) can be used to construct "N-soliton" solutions. 
"three-soliton" solution corresponds to the diagram 

a2 %P2 

,o o, *b -, 

as ~3 a~ 

For example, the 
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where ~o = 0 and from (2.2) the functions ~l(1 = i, 2, 3) have the form 

~ = 4arc tan  exp ~ z + a~z), a~ = exp ( i ~ ) ,  a~ ~ R.  

The f u n c t i o n s  ~e and  ~b a r e  f o u n d  u s i n g  t h e  n o n l i n e a r  s u p e r p o s i t i o n  p r i n c i p l e  ( 2 . 3 )  

(Ol = ~lZ + alE). 

(~c -- ~b)]- The final formula for ~f is 

[ s(%,or ] 

[0,5 
H e r e  S ( a i ,  ~ )  = • cosh [0,5(s i l -oj)]  ; • ---- c o r k - - - f - - -  ], o i  and  a i h a v e  b e e n  d e f i n e d  a b o v e .  

(2.4) 

~, + ~2 , ~b = 4 arctan. - -  

a 1 + as 
The solution ~f is given by the relation tan[0.25 (g~f--~2)]=a _a~ tan[0.25 • 

The 

functions ~i (i = i, 2, 3) are real, while ~c and ~b are purely imaginary. A purely imagi- 
nary solution of (2.1) is a real solution of the equation ~z = sinh~, which admits a Beklund 
transformation of the type (2.2) with the trigonometric sines on the right hand side replaced 
by hyperbolic sines. The trigonometric tangents in (2.3) are then replaced by hyperbolic 
tangents. 

l~en a~ + a2 the solution generating formula (2.3) becomes 

tan ~B 4 ~___~o = 2 - a d ~ r  ( 2 . 5 )  

I f  we t a k e  ~o = O, t h e n  ~1 i s  g i v e n  by  ( 2 . 4 )  and  ~ B = 4  arc tan~ c-~-~-- ] (o = ~z  + a z ) .  R e p e a t e d  

application of the superposition princir (2.5) gives the following new solution of (2.1) 

[ ] 1~ 4 a rc tan  (exp s) + 4 a rc tan  2 (az + ai) cosh:~ --  (a~ - -  ~)~ sinh 

When a = 1 t h i s  s o l u t i o n  t a k e s  t h e  f o r m  

4 a rc tan  (exp 2x) + ~arc tan  (4  z c~ 2 z -  2~2 s iah  2x ) 
'- cosh 2 2x - -  4 y  

I t  i s  n o t  d i f f i c u l t  t o  f i n d  an  e x p l i c i t  e x p r e s s i o n  f o r  t h e  s t r e a m l i n e s  i n  t h i s  c a s e  

y~ = cosh 2xcosh 2z (c - -  exp 2x) - -  4x (l d- e x p  2z) 
4 c e x p  ( 4 x )  - -  e x p  (-- 2x) 

w h e r e  t h e  c o n s t a n t  c i s  i n t r i n s i c  t o  e a c h  t r a j e c t o r y .  W i t h o u t  p r e s e n t i n g  t h e  d e t a i l e d  
p r o o f s ,  we a s s e r t  t h a t  t h e  v e l o c i t y  i s  b o u n d e d  on t h e  e n t i r e  p l a n e  o f  f l o w  e x c e p t  f o r  two 
p o i n t s  ( 0 ,  1 / 2 )  and  (0 ,  - - 1 / 2 )  a t  w h i c h  i t  h a s  s i n g u l a r i t i e s ;  a l l  o f  t h e  t r a j e c t o r i e s  e n t e r  
o r  l e a v e  f r o m  t h e s e  p o i n t s ;  t h e  s t r e a m l i n e  f i e l d  i s  s y m m e t r i c  w i t h  r e s p e c t  t o  t h e  a x i s  x = 0 .  
T h i s  d e s c r i b e s  t h e  m o t i o n  o f  a r o t a t i n g  f l u i d  i n  t h e  p r e s e n c e  o f  a s o u r c e  and  a s i n k .  U n l i k e  
t h e  p o t e n t i a l  f l o w  f o r  a d i p o l e ,  i n  t h i s  c a s e  t h e r e  a r e  s t r e a m l i n e s  l e a v i n g  t h e  s o u r c e  and  
g o i n g  o u t  t o  i n f i n i t y  (and  c o m i n g  i n  f r o m  i n f i n i t y  and  e n d i n g  on t h e  s i n k )  i n  a d d i t i o n  t o  
t h e  u s u a l  t r a j e c t o r i e s  j o i n i n g  t h e  s o u r c e  and  s i n k .  We n o t e  t h a t  t h e  " N - s o l i t o n "  s o l u t i o n s  
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described above are also not smooth on the entire plane of flow, but have source or sink 
singularities. 

3. Ue assume that m(~) = sinh@. Then we look for a solution of (i.i) in the form 
= 4 arth(f(x)g(y)), where the functions f and g satisfy the equations 

l'" = n/4 F ,nf' + k, g'~ = - - k g '  -" (1  - -  m ) g "  - -  n ,  

n, m, k ~ R. 

Then 

(3. l )  

u -=- 4/~,' 41 '~  I -,'-- 12~ 2 
t i~2, ~,-- ~ 4 / g  ( 3 .2 )  

- -  1 -.-/'F" (I - / ~ q T b  ~ 

I f  we s e t  n e q u a l  t o  z e r o  i n  ( 3 , 1 ) ,  we o b t a i n  t h e  s o l u t i o n  [ 6 ] :  g--.: V " t - m  
1 

k cosh(W----C~, y)' 

1 :  . ._ , - - -~ . s in ( l / - -~x)  ( k > O , m < O ) .  The s t r a i g h t  l i n e s  x = TrL/~--'s (L i s  any  i n t e g e r )  

a r e  s t r e a m l i n e s .  B e c a u s e  o f  t h e  p e r i o d i c i t y  o f  f and t h e  f a c t  t h a t  i t  i s  an  odd f u n c t i o n ,  

it is sufficient to know the streamlines inside the strip M = {0 ~ z~]~/2m}. Solving the equa- 
tion for the trajectories cosh(V 1 -- my) = e sin (Vmx) for y, (c > I), it is not difficult to show that 
all streamlines lying inside M must be closed and bounded. We note that the trajectories in M 
are symmetric with respect to the straight lines y = 0, x = ~/2 --/~-~m. It follows at once 
from (3.2) that the velocity and vorticity go to zero as IYl § ~ and to infinity as we 

approach the line r--m cosh(]/~-_~y) I. Taking any two streamlines belonging to the set 

{(x, g) ~ J~[ : 0 </(.z)g(g) < i} as solid boundaries, we obtain the flow field between two 
cylinders. According to the Arnol'd theorem [Ii], this flow field will be stable to t~o- 
dimensional perturbations since there exist two numbers A~ and A2 satisfying the inequality 

Al ~ ~'0~) -- cosh ~ ~ A, > 0. 

Suppose the parameters k, n, m obey the inequalities k > 0, n < 0, 0 < m < I. Then 
both of the equations of (3.1) can be reduced by scale transformations to the form 

h '2---(t-h z)(p~ +p~h2), PieR, p~4-p~---'- 1. 
This equation is satisfied by the Jacobian cosine elliptic function [7, 8]. Hence the func- 
tions f and g can be written in terms of the elliptic cosine function, have periods t, and 
t2, and have two zeroes per period. In view of the translational invariance of (3.1), we 
can put f(0) = g(0) = 0. Therefore the straight lines x = t~L/2, y = t2L/2 (L is an integer) 
are streamlines. The streamlines can be obtained over the entire plane of flow knowing only 
the behavior of the trajectories inside the rectangle P = {0 ~ x ~ tJ2, 0 ~ 9 <~ tJ2}. Fol- 
lowing the reasoning of Sec. 1 (case a), we conclude that all trajectories lying inside P 
must be closed and bounded. However the stream function, velocity, and vorticity all go to 
infinity as we approach the line fg = i. The existence of such a line follows from the fact 

that f varies between--V -m- V~-4kn2n and ~--m--]/~--4k,2n , while the function 

g varies from --~/[l-m-t- ~ / ( 1 - m ) 2 - 4 k n '  2k to Vt--m+ V(l--m)~--4kn2k Indeed, according 

to (3.1), the extremum values of the functions can be found from the solution of the 
biquadratic equations n/4 i-mff i~ k = 0, ~'~ ~ (--I -I- m)g 2 + n = 0. It follows from the above 
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discussion that it is necessary to consider a set of the type Ilc---- {(x, g)~ R2:0~z~t v 

0~.~g~t~, J2g'~c<l}. on the plane of flow. If we take the boundary P-c to be a solid 

Wall, then we obtain stable [ii] vortex flow inside a rectangular cylinder in which there 

are four symmetric cylinders. The streamlines are shown in Fig. 4, where the vorticity 

changes sign when passing through a symmetry axis of the rectangle. 

Periodic motion between a flat bottom and a cover can be obtained for the following 

conditions on the parameters of (3.1): m < 0, n > 0, m 2 = 4kn. With the help of scale 

transformations, (3.1) for g reduces to the form g,2--(l- g2)(g~_ p2) (p~B). Hence g 
can be expressed in terms of the elliptic delta function dny [7, 8], which is periodic and 

(/-) - m  

nowhere zero. The function f is given by/:= ~ 2, -~-x. The equation for the 

|~7~mtanh(F2~-:c) g(y)-=c when solved for x has the form x(y) = ~__'--~marth streamlines 

g(Y) 7" Equation (3.1) can be used to find the region of allowed values of the 

|/1-- m-- ]/1----~-f~m g l-- ,n+I/I- 2,n Suppose we have the inequality 
function g: 2k <'~ g(y)< 2k 

ruing < 1 or its equivalent c< --m , ~en x(y) will be a smooth perio- 

] / / ~  - ,~ - : V I  --- 2,n 
dic function. If we put c = --m , then the function x(y) will be determined 

everywhere except at the points at which g(y) reaches minimum values. Taking the straight 
s y -  

line x = 0 and any streamline belonging to the set I(x,y)~[~'~: [(~:)g(y)<I/I -m--I/~} 
~gR 

as solid walls, we obtain periodic motion in y. The streamlines are shown in Fig. 5. 

Equations of the form (i.i) arise in a wide range of physical problem~: nroblems of 
plasma physics [12], statistical mechanics [13, 14], and steady heat conduction. For exam- 
ple, two of the solutions described above were discussed in a study of solitons in the hydro- 

dynamic- model of a cold plasma [13]. 

4. Suppose the vorticity in (i.i) has the form m = ~ exp(--2~) -- exp ~. Then we can 
look for a solution of (i.i) in the form ~ = in(f(x) + g(y)), where the functions f and g 

satisfy the ordinary differential equations 

]'~ ---- - - 2 ]  ~ + a.,] 'z -I- a l l  -i- ao,  g,Z - -  _ 2 g ~  _ a~g~ _-  a~g - -  a o - -  [J. (4.1) 

We will assume that a~ = 0 and ~ > 0, a= < 0, ao > 0. The components of the velocity and 

the vorticity are given by 

u := g'/(l + g), v = --y/(j-~ g), ~ = ~/(1 -~ g)2_]_ g. (4.2) 

In order that f and g be periodic functions, each of the cubic equations --2f 3 + a2f 2 + ao = 
0, --2g 3 -- a2g 2 -- ao -- B = 0 must have three unequal real roots. If fl < f2 < f3 are the 

roots of the first equation then --f~, --f2, --f3 are the roots of the equation --2g 3 -- 
a2g 2 -- ao = 0 and so from the above assumptions we have f~ < 0, f2 < 0, fz > 0. l[ence for 
small ~ the equation --2g 3 -- a2g 2 -- ao -- 8 = 0 will also have three roots g~ > g2 > g3 
(g2 > 0, g3 < 0). Therefore there exist numbers ao, a2, B such that the functions f and g 
satisfying (4.1) can be chosen to be periodic. Since 8 > 0, the sum f2 + g2 is positive. 
As in the preceding paragraphs, we can find the region of values of the functions f and g: 
/2~f(x)~/~, g2~g(g)~gl �9 Hence the mapping in(f(x) + g(y)) is defined correctly. 

Let t~ and t2 be the periods of the functions f and g, respectively. Because of the 
translational invariance of (4.1), we can assume that f and g have maximum values at zero. 
Then f will reach maximum values at the points t:L and minimum values at the points t~(2L + 
1)/2 (L is any integer). Similarly the function g reaches maximum values at the points 
t2L and minimum values at the points t2(2L + 1)/2. The points of the plane R2(x, y) where 
the functions f and g both have a maximum or a minimum are singular points of the differen- 
tial equations for the streamlines dx/u = dy/v, which, in vie~ of (4.2), are equivalent to 

d x / g '  = d g / - - f  . (4.3) 

Iii 



The points of the plane where f has a maximum and g has a minimum (or vice versa) are saddle 
points for (4.3). 

~le trajectories are the isolines of the function F(x, y) = f(x) + g(y). If the gradi- 
ent of F vanishes at a point, this point is called a critical point, and the corresponding 
value of F is a critical wllue. Only those points of the plane at which the derivatives of 
the functions f and g both vanish are critical points for F. llence in general there exist 
four critical values: c 1=:maxf(J~+max~(y), c 2=maxg(y)+ min](~,c 3=ming(y)+max/~), c 4 

x ~  R N ~  R y E  R x ~  R y ~  R x E  R 

ming(y) +min/(~. From the regular interval theorem [9], the isolines F(x, y) : sl, 
y~B x~R 

F(x, y) = s3, where c, < sl < c2, c3 < s3 < c4, are diffeomorphic circles, since the criti- 
cal points of F corresponding to the critical values c: and c~ are central singular points 
for (4.3). The isolines corresponding to the critical values c2 and c3 pass through the 
saddle points of (4.3). ~ley are separatrices of (4.3) and pass from saddle point to saddle 
point. Suppose c= > c3. Then the separatrices join the saddle points lying on the straight 
lines y = t2L/2 (L is an integer). The qualitative form of the corresponding streamlines is 
shown in Fig. 6, in which vortex chains are arranged in a staggered order. Because c2 # c3, 
there exist streamlines in the plane of flow going between the chains. If c2 = c3 the boun- 
daries of neighboring chains become common boundaries. The qualitative form of the stream- 
lines in the case c3 > c= can be obtained by turning Fig. 6 by 90 ~ . Note the similarity 
between the solutions discussed in this section and the periodic secondary flows described 
in [15]. 

The author thanks V. A. Vladirimov for detailed discussions of the results. 
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