waves in a stratified layer it depends on Fr: as Fr -+ 0 it approaches zero, while as Fr + =
it approaches 8y.

An even smaller difference is observed in the behavior of waves at the boundary of the
wedge itself. The crests at the boundary of the wedge of surface ship waves make an angle
of (pw=arctan]/-2‘ with the x axis. In the case of internal ship waves as Fr - « it
approaches ¢ y, and as Fr decreases it slowly grows and approaches 60°., Figure 6 shows the
theoretical dependence of the slope angle of the tangent at the turning point of the line of
constant phase with respect to the x axis on 1/Fr.

For small values of Fr the experimentally observed lines of constant phase are practi-
cally parallel straight lines. In addition, they pass outside the boundary of the wave zone,
determined by the value of 8 (6 »> 0).

We thank A. T. Onufriev for a discussion of the results obtained.
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SOME CLASSES OF TWO-DIMENSIONAL
VORTEX FLOWS OF AN IDEAL FLUID

0. V. Kaptsov UDC 532.5+517.958

3

There are relatively few known exact steady solutions of the two-dimensional Euler equa-
tions [1-3]. This is in part explained by the fact that the symmetry group of these equa-
tions is low [4]. But progress achieved in the study of nonlinear wave equations [5, 6} can
be partially carried over to the study of elliptic problems. The purpose of the present
paper is to obtain solutions of the equation for the stream function and to analyze these
solutions. The solutions found here describe motion of the source type in a rotating fluid,
periodic flow between two walls, motion in a rectangular cylinder, and others.

1. The stream function ¥ for the two-dimensional steady flow of an ideal fluid satis-
fies the equation

A(z, y) = o, (1.1)

where the vorticity w is a function of ¥. For certain forms of the right hand side (1.1)
can be solved using a modified separation of variables method and the Beklund transformation

(e].

We assume that the vorticity is given by w(¥) = & sin y(e = #1). We look for a solu-

tion of (1.1) in the form [5] ¥(x, y) = 4arctan(f)x)g(y)), where the functions f and g satisfy
the ordinary differential equations

I3 = nft -k mf kg% = kgt + (e — m)g® + n (1.2)

Krasnoyarsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.
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(n, m, k are arbitrary constants). Then the vorticity and the components of the velocity
vector can be calculated from the relations '

fe (1 — 1%").
('):48_(Irf2ng)g22' (1.3)
U AN Y S i S
u 41+72g2" v 41-%—!2g2' (1.4)

The choice of the constants in (1.2) determines the type of flow. Suppose n > 0, k,
m <0, and € = —1. We consider three cases: a) 4kn < m® < 1/4; b) &kn = m® < 1/4; ¢)
4kn = m® = 1/4, We first discuss the most degenerate situation, case c. In this case (1.2)

is satisfied by the functionsj(x)zﬁmnh(%), g(y)=21/'r-ttanh(%-)- Then in the plane of flow

R*(x, y) the straight lines x = 0 and y = 0 are streamlines and the vorticity is zero on
these lines. It follows from (1.3) that w < O in the first and third quadrants of the plane
R%*(x, y), while w > O in the second and fourth quadrants. Since the trajectories are deter-

mined by the relationtznh(%)tmﬂlt%):=0, where [c| < 1, each stream line has its own pair of

asymptotes x = ¢ dnd y = c¢. Because the functions f and g are odd, it is sufficient to know
the streamlines in the first quadrant of the plane R*(x, y). The equation of the trajec—

tories solved for y has the form y(m)r=2aﬂh(cc061(%)) (0 <<ec<<1). Therefore the function

y(x) monotonically decreases for x > 2 arth c. The components of the velocity vector are

| 2tanh(%) | e —Ztmm(%) . ,
STl B ] ]

and hence u » 0 in the limit |y| > ® and v > 0 in the limit |x| > =, In addition, the vor-
ticity goes to zero when x and y both go to infinity. This solution can be interpreted as
flow inside a right angle bounded by the coordinate axes, or as the symmetric collision of
two diffuse "jets." The ''jets'' are diffuse since the pressure is not constant along any
of the streamlines.

U —

Suppose we have condition b. Then by a scale transformation equation (1.2) for g
reduces to the standard form g'? = (1 — g?) x (1L — p?g?), where the constant p can be
expressed in terms of n, m, and k. Hence the function g can be expressed in terms of the
elliptic sine function siny [7, 8] with a certain period T and two zeroes per period. In
view of the translational invariance of (1.2), we can put g(0) = 0. The function f is given

2
(L is any integer). In view of the periodicity of g and the fact that f and g are odd func-
tions, it is sufficient to know the streamlines inside the half-strip 0y T2, 220}.

by f == l/Eéfltmﬂ&]/rilﬂix) Therefore the straight lines x = 0, y = TL/2 are streamlines

Since limta:xh( %le) =1, any trajectory tanh(‘/:;}lx)g(y) =¢, where ¢ # 0, has a pair of
X 00
asymptotes parallel to the x axis. 'The equation for the trajectories determines the impli-

. X e . d g’ el .
cit function x(y), whose derivative is E%::-—c'v/:%%%gcoﬂﬂ(}/ljgix% and therefore it is

not difficult to obtain a qualitative picture of the streamlines (Fig. 1). Ve note that the
velocity is finite but nonzero in the limit x > =.

. 'Finally in case @ each of the equations of (1.2) can be transformed to the form h'?
(L — h3) A — p*h®) (ps R) by means of a scale transformation. It follows at once that
f and g can be expressed in terms of elliptic sine functions [7, 8] of periods t, and t: and
both functions have two zeroes per period. With no loss of generality we can assume that
£(0) = g(0) = 0. Therefore the straight lines x = t,L/2 and y = t.L/2 (L is any integer)
are streamlines. 1In view of the periodicity of f and g and the fact that they are odd func-
tions, the streamlines can be obtained over the entire plane of flow knowing only the
behavior of the trajectories inside a rectangular cell P = {0<e<t/2, 0y <t/2}. All.

streamlines belonging to P are closed and bounded. Indeed, the derivatives of f and g are
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nonzero except at the center of P, while the functions themselves do not have zeroes inside

P and reach extremum values at the center of the cell. The streamlines are isolines of the
function F(x, y) = f(x)g(y). The function F reaches an extremum at the center of P, and its
gradient is nonzero inside P, This means, according to the regular interval theorem [9],
that the isolines inside P are closed and bounded. Therefore the plane of flow splits up
into rectangular cells of the type P. There is a vortex inside each cell. Equating the

left hand sides of (1.2) to zero, we can easily find the extremum values of the functions f
and g and show that |fg| < 1, Then it can be shown with the help of (1.3) that the vorticity
goes to zero on the boundary of the cell and changes sign when passing through a side of the
rectangle P. The vortices in neighboring cells also rotate in different directions. Since

the vorticity as a function of fg is w(c) = —4c(l — c?)/(1 + ¢?)?, then depending on
whether the absolute value of the product fg reaches the value V3 — /8 (w has an extremum
for this value) or not, the vorticity will be an extremum either on the line !fg[ =3 = /8

or in the center of the cell. If we assume the boundary of P is a solid wall, we have flow
inside a rectangular cylinder.

A different solution of (1.2) is obtained if we choose the parameters € = 1, n = 0,

k <0, 0 <m <1, In this case the product fg = 1—m “mh(l/mx). + Hence the straight

™ cosh (YT —"my)

Z are streamlines. Any other trajectory has a pair of asymptotes

m
1--m

lines y =+ ]//

parallel to these lines. The vorticity changes sign upon passing through these straight
lines. The velocity and vorticity go to zero in the limit x - « along any of the family of

straight lines y = azx (a;&;t'y/T{?E). This solution can be interpreted either as flow

inside a two-sided angle (but not necessarily a right angle, as in case c¢) or as the colli-
sion of two diffuse ''jets.'' A detailed discussion is omitted since this solution is simi-
lar to those discussed above. The qualitative picture of the streamlines is shown in Fig. 2.

Solutions of the source or sink type in a rotating fluid are of interest. One of the
_ 1

" VE sinh y
€ =1, m=n=0, k >0. According to (1.4), the components of the velocity vector are u =
— 4z coshy = 4sinh? y rsinh y (sinh? y — %)

— =—p———=, and the vorticity is given by w =4 - 5 + The strean-
Sisinhty’ 2 sinh v 4 (sinh?, | 77)?

simplest solutions of (1.2) is ﬂd)::}/ﬁx,g(y) corresponding, to the parameters

L]

lines are given by the equation x = ¢ sinhy (¢ R). The origin of the coordinate system
is a point of discontinuity for the velocity and the vorticity. However the flux 0 =

ﬂﬁLﬂx—kudy is finite in this case and equal to —8w. (It is convenient to evaluate the

integral along the contour x® + sinh?y =1). Hence there is a sink at the origin. The vorti-
city is zero on the lines x = %sinhy, x=0,y = 0, except for the point of discontinuity,
and it changes sign upon passing through these lines. The velocity goes to zero in the
limit x > © and fixed y. If we take any streamline x = sinhy and follow the change in
velocity along it, then u -+ —é4c/(1 + c*), v —+ 0, when x and y go to infinity along the tra-
jectory and the velocity will reach a maximum when |c| = 1. In contrast to the potential
solution for a sink, which is centrally symmetric, the flow found here resembles a four-cur-
rent type of motion.
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Fig. 3

The above solution is the limiting case when m + 0 of the solution j::'y/]géinh(lfﬁzxx

m

1—m 1 B
= : . << 1), i ;
g Fsinn (T =) (:>0,0<m<1), which also describes flow of the sink type in a
rotating fluid. Here each trajectory has a pair of asymptotes parallel to one of the lines

Y= =+ }/ijfma-- These lines are streamlines on which the vorticity is zero and changes

sign upon passing through them. This flow can also be called four-current sink flow. The
qualitative pictures of the streamlines for the latter two solutions are shown in Fig. 3.
Interest in solutions of this kind was initiated with the work of Zhukovskii [10].

2. Using complex variables, the equation for the stream function (1.1) with right hand
side given by w = 4 sin ¢ can be written in the form

z;———sinlp,z=:r:—{—iy,z———:ac—iy. 2.1)

Using the obvious analogy with the equation x¢yx = sin x [5], we immediately write down . the
Beklund transformation [6]

20+ o) =gsin (P50 ) 3 (b — 0z) = asin [(12), 2.2)

where the parameter a is considered a complex number of modulus unity. It is easy to show
that if § and ¢ are solutions of the system (2.2), then each of these functions satisfies
(2.1). Therefore if we know one solution ¢ of (2.1) the other solution can be found by
integrating the system (2.2). It is remarkable that this can be done by solving an ordinary
differential equation of the first order. Repetition of this procedure leads to a new solu-
tion of (2.1), and so on. The repeated integration can be avoided by using the Bianchi per-
mutability theorem [6]. Let ¢=1, be a known solution of (2.1) and let Yj(i = 1, 2) be
solutions obtained by integrating the system (2.2) with a = aj(1{ = 1, 2). Then the Bianchi
theorem can be used to find a new solution yp directly from the equation

%"‘q’o:“1+a2mw1-¢2 (2.3)

tan 4 a -—a 4 ’

1 2

which is a nonlinear superposition principle for the solutions of (2.1). This process can
be illustrated by means of a diagram

4GP, %
v g \w .
0
~N B
o9 WPy 9

- The identity (2.3) can be used to construct ''N-soliton'' solutions. For example, the
'"three-soliton'' solution corresponds to the diagram

\ﬂ?/’
-
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where Yo = 0 and from (2.2) the functions y7(Z = 1, 2, 3) have the form
P, = 4arctan exp (a; z + az), a; = exp (iay), @, & R. (2.4)

The functions y. and Y, are found using the nonlinear superposition principle (2.3)

6 —0 g, —0
. 1 2 . 2 3
a, 4a, sinh ( 5 ) 2, -a s1nh( 3 )
Ye = 4 arctan | 2—~ - » Pp="4arctan | E—%—
i a, =, g, +9, 4,4 O, 04
) 1 cosh 3 ’ cosh __._2___

- a +ag
(067 = azz + azz). The solution y¢ is given by the relation tan[025(w,—-w»]==a'__astanﬂl25 X
i %
(¢ — ¥p)]. The final formula for VYr is

) ) L]
Py = 4 arctan [Wal 18_((’; (::? ) S(ZSI,O;Z) ] + 4 arctan fexp (6,)].

sinh [0,5 (0; — o; .
B0 — o)l xﬁ==cot(a‘2 aq; o; and aj have been defined above. The

Xij “cosh [0,5(o; - 05)] *
functions $i (i = 1, 2, 3) are real, while Y. and {yp are purely imaginary. A purely imagi-
nary solution of (2.1) is a real solution of the equation Y3z, = sinhy, which admits a Beklund
transformation of the type (2.2) with the trigonometric sines on the right hand side replaced
by hyperbolic sines. The trigonometric tangents in (2.3) are then replaced by hyperbolic
tangents.

Here 8(o0;, 0;) =

When a, + a2 the solution generating formula (2.3) becomes
B, (2.5)

tan A

Py

2| &
&l

If we take Yo = 0, then ¥, is given by (2.4) and ¢B==4axcgm(ﬁ%%ﬁg) (c = az + az). Repeated

application of the superposition principle (2.5) gives the following new solution of (2.1)

P = 4 arctan (exp 6) + 4arctan [2 (a2 + a2) cosho — (a2 —az)" sinh ].

cosh? ¢ + (az — az)*

When g = 1 this solution takes the form

2 .
¢=4wﬁﬂﬂﬁ@+@mm«fw“h_%mmh )

cosh? 2z — 4y°

It is not difficult to find an explicit expression for the streamlines in this case

2 _ cosh 2zcosh 2z (c — exp 2z) — 4z (1 + exp 2z)
vy = 4 ¢ exp (4z) — exp (— 27) :

where the constant c is intrinsic to each trajectory. Without presenting the detailed
proofs, we assert that the velocity is bounded on the entire plane of flow except for two
points (0, 1/2) and (0, —1/2) at which it has singularities; all of the trajectories enter
or leave from these points; the streamline field is symmetric with respect to the axis x = 0.
This describes the motion of a rotating fluid in the presence of a source and a sink. Unlike
the potential flow for a dipole, in this case there are streamlines leaving the source and
going out to infinity (and coming in from infinity and ending on the sink) in addition to

the usual trajectories joining the source and sink. We note that the ''N-soliton'' solutions
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Fig. 6

described above are also not smooth on the entire plane of flow, but have source or sink
singularities.

3. Ve assume that w(y) = sinh ¢. Then we look for a solution of (1.1) in the form
¢ = 4 arth(f(x)g(y)), where the functions f and g satisfy the equations

[P=nfA tmi+k g% =—kgt - (1 —mg* —n, (3.1)
n, m, k= R.
Then
_ A, e o hfg AL (3.2)
PRI R & - r2*

r

If wve set n equal to zero in (3.1), we obtain the solution [6]: g== V1~m

1

. £k cosh(V1—my)'
I3 -

I V-_-'—” sin(V=mz) (k>0,m<<0). The straight lines x = 7L/Y—m (L is any integer)

are streamlines. Because of the periodicity of f and the fact that it is an odd function,

it is sufficient to know the streamlines inside the strip M = {0 < z<n«/V =m}. Solving the equa-
tion for the trajectories cosh(V 1 — my) = ¢sin (¥ ma) for y, (c > 1), it is not difficult to show that
all streamlines lying inside M must be closed and bounded. We note that the trajectories in M

are symmetric with respect to the straight lines y = 0, x = 7/2V¥—m. It follows at once

from (3.2) that the velocity and vorticity go to zero as ly| + « and to infinity as we

approach the line l/i:,:::;é‘(%."j)mﬁt Taking any two streamlines belonging to the set

{(z, ¥) &= M :0< f(x)gly) <1} as solid boundaries, we obtain the flow field between two
cylinders. According to the Arnol'd theorem [11], this flow field will be stable to two-
dimensional perturbations since there exist two numbers A; and A, satisfying the inequality

A, = o'(p) = cosh Y= 4,> 0.

Suppose the parameters k, n, m obey the inequalities k > 0, n <0, 0 <m < 1. Then
both of the equations of (3.1) can be reduced by scale transformations to the form

R =(1—h)(pt+ pth2), pieR, pi+pr=1

This equation is satisfied by the Jacobian cosine elliptic function [7, 8]. Hence the func-
tions f and g can be written in terms of the elliptic cosine function, have periods t, and
t2, and have two zeroes per period. In view of the translational invariance of (3.1), we
can put £(0) = g(0) = 0. Therefore the straight lines x = t,L/2, y = t,L/2 (L is an integer)
are streamlines. The streamlines can be obtained over the entire plane of flow knowing only
the behavior of the trajectories inside the rectangle P = {0 e /2, 0y < ty/2). Fol-
lowing the reasoning of Sec. 1 (case a), we conclude that all trajectories lying inside P
must be closed and bounded. However the stream function, velocity, and vorticity all go to
infinity as we approach the line fg = 1. The existence of such a line follows from the fact

5, - . .
that f varies between . l/ —m—Vm’ —tkn and ‘/ —m—V m —tkn _ while the function

2n 2n
g varies from ".V1 —m- V(‘l —m)2—4kn to “/1—m+ V(i —m)2-—-4kn . Indeed, according
ok ] 2k .
to (3.1), the extremum values of the functions can be found from the solution of the
biquadratic equations nft - mf® -+ k = 0, kg* + (—1 -- m)¢* + n =0. It follows from the above
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discussion that it is necessary to consider a set of the type Il = {(z, y) = R%: 0 z<ty,

05;5;<:tr f)et<c<1}. on the plane of flow. 1f we take the boundary I to be a solid
wall, then we obtain stable [11] vortex flow inside a rectangular cylinder in which there
are four symmetric cylinders. The streamlines are shown in Fig. 4, where the vorticity
changes sign when passing through a symmetry axis of the rectangle.

Periodic motion between a flat bottom and a cover can be obtained for the following

conditions on the parameters of (3.1): m <0, n > 0, m° = 4kn. With the help of scale
transformations, (3.1) for g reduces to the form g2 =1 —-g)g®—p) (pes R). Hence g
can be expressed in terms of the elliptic delta function dny [7, 8], which is periodic and
nowhere zero. The function f is given by jf:= :%?taMI( :%Bxy. The equation for the

- \ -5
streamlines ]/r——-UMm( —Tﬂx)g(y):zc when solved for x has the form x(y) = }/:éﬁarul

¥z |

). Equation (3.1) can be used to find the region of allowed wvalues of the

gy
—m— ) 1/'?:

function g l//!——ﬁi‘a%il——iﬁ ()<:‘/f —mtVi—-2m  gyppose we have the inequality

: :::<: 1 or its equivalent ¢< \/r1~'m'”1/1_"2m . Then x(y) will be a smooth perio-
mingV —m —m

. . _ 1 —m—Vl —om . . P
dic function. If we put c = —_— then the function x(y) will be determined
everywhere except at the points at which g(y) reaches minimum values. Taking the straight
line x = 0 and any streamline belonging to the set j(z, y)= R f@)g(y)<:]// __JELE;%L:;%Z}

as solid walls, we obtain periodic motion in y. The streamlines are shown in Fig. 5.

Equations of the form (1.1) arise in a wide range of physical problems: problems of
plasma physics [12], statistical mechanics [13, 14], and steady heat conduction. For exam-
ple, two of the solutions described above were discussed in a study of solitons in the hydro-
dynamic model of a cold plasma [13].

4. Suppose the vorticity in (1.1) has the form w = B exp(—2¢) — exp Y. Then we can
look for a solution of (1.1) in the form ¥ = 1n(f(x) + g(y)), where the functions f and g
satisfy the ordinary differential equations

'

2= =2+ a,f--a,f + a,, g% = —2¢° — a8 -+ 0,8 — a, — B. (4.1)

We will assume that ¢, = 0 and § > 0, a2 <0, ao > 0. The components of the velocity aund
the vorticity are given by

u=gif+g,v=—fj+g, o=pf+8" —f—& (4.2)
In order that f and g be periodic functions, each of the cubic equations —2f% + q;f? + ao =
0, —28> — a.g® — ao — B = 0 must have three unequal real roots. If f, < f, < f5 are the

roots of the first equation then —f,, —f,, —f3 are the roots of the equation —2g% —
azg — ao = 0 and so frou the above assumptions we have f, < 0, f, <0, f5 > 0. Hence for
small B the equation —2g? — a,8® — ao — B = 0 will also have three roots g, > g2 > gs
(g2 >0, gs < 0). Therefore there exist numbers do, @2, B such that the functions f and g
satisfying (4.1) can be chosen to be periodic., Since B > 0, the sum f, + g, is positive.
As in the preceding paragraphs, we can find the region of values of the functions f and g:
<)< fs B:<g(y)<g . Hence the mapping ln(f(x) + g(y)) is defined correctly.

Let t, and t, be the periods of the functions f and g, respectively. Because of the
translational invariance of (4.1), we can assume that f and g have maximum values at zero.
Then f will reach maximum values at the points t,L and minimum values at the points t, (2L +
1)/2 (L is any integer). Similarly the function g reaches maximum values at the points
t.L and minimum values at the points t»(2L + 1)/2. The points of the plane R*(x, y) where
the functions f and g both have a maximum or a minimum are singular points of the differen-
tial equations for the streamlines dx/u = dy/v, which, in view of (4.2), are equivalent to

dz/g’ = dyl . (4.3)
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The points of the plane where f has a maximum and g has a minimum (or vice versa) are saddle
points for (4.3). '

The trajectories are the isolines of the function F(x, y) = f(x) + g(y). If the gradi-
ent of F vanishes at a point, this point is called a critical point, and the corresponding
value of F is a critical value. Only those points of the plane at which the derivatives of
the functions f and g both vanish are critical points for F. Hence in general there exist

four critical values: ¢, = maxjf(z) + maxg(y), c¢,=maxg(y)+ minf(z), c;, =ming(y) + maxf (), ¢, =

&R YER yER x=R yER ~ x€R
ma?g(y)4'"ﬁ3f(1% From the regular interval theorem [9], the isolines F(x, y) =s,,
ve e

F(x, y) = s3, where ¢c; < 8, < c2, C3 < 83 < Cc4, are diffeomorphic circles, since the criti-
cal points of F corresponding to the critical values c, and ¢4 are central singular points
for (4.3). The isolines corresponding to the critical values c. and c; pass through the
saddle points of (4.3). They are separatrices of (4.3) and pass from saddle point to saddle
point. Suppose ¢, > ca. Then the separatrices join the saddle points lying on the straight
lines y = t;L/2 (L is an integer). The qualitative form of the corresponding streamlines is
shown in Fig. 6, in which vortex chains are arranged in a staggered order. Because cz # cs,
there exist streamlines in the plane of flow going between the chains. If c, = cs the boun-
daries of neighboring chains become common boundaries. The qualitative form of the stream-
lines in the case cs > ¢, can be obtained by turning Fig. 6 by 90°. Note the similarity
between the solutions discussed in this section and the periodic secondary flows described
in [15].

The author thanks V. A. Vladirimov for detailed discussions of the results.
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